Team Round
 CCA Math Bonanza

2 Feb 2019

T1) Will has a sock drawer with 2 socks of each color: red, green, blue, white, black (socks of the same color are indistinguishable). He absentmindedly grabs 2 socks out of the drawer. What is the probability that he got a pair of matching socks?

T2) A triangle has side lengths of $x, 75,100$ where $x<75$ and altitudes of lengths $y, 28,60$ where $y<28$. What is the value of $x+y$?

T3) What is the sum of all possible values of $\cos (2 \theta)$ if $\cos (2 \theta)=2 \cos (\theta)$ for a real number θ ?

T4) Find the number of ordered tuples (C, A, M, B) of non-negative integers such that

$$
C!+C!+A!+M!=B!
$$

T5) What is the smallest positive integer n such that there exists a choice of signs for which

$$
1^{2} \pm 2^{2} \pm 3^{2} \ldots \pm n^{2}=0
$$

is true?
T6) Compute $\sum_{n=3}^{\infty} \frac{n^{2}-2}{\left(n^{2}-1\right)\left(n^{2}-4\right)}$.
T7) How many ordered triples (a, b, c) of positive integers are there such that at least two of a, b, c are prime and $a b c=11(a+b+c)$?

T8) fantasticbobob is proctoring a room for the SiSiEyMB with 841 seats arranged in 29 rows and 29 columns. The contestants sit down, take part 1 of the contest, go outside for a break, and come back to take part 2 of the contest. fantasticbobob sits among the contestants during part 1 , also goes outside during break, but when he returns, he finds that his seat has been taken. Furthermore, each of the 840 contestants now sit in a chair horizontally or vertically adjacent to their original chair. How many seats could fantasticbobob have started in?

T9) Points P, Q, and M lie on a circle ω such that M is the midpoint of minor arc $P Q$ and $M P=M Q=3$. Point X varies on major arc $P Q, M X$ meets segment $P Q$ at R, the line through R perpendicular to $M X$ meets minor $\operatorname{arc} P Q$ at $S, M S$ meets line $P Q$ at T. If $T X=5$ when $M S$ is minimized, what is the minimum value of $M S$?

T10) Define three sequences a_{n}, b_{n}, c_{n} as $a_{0}=b_{0}=c_{0}=1$ and

$$
\begin{aligned}
a_{n+1} & =a_{n}+3 b_{n}+3 c_{n} \\
b_{n+1} & =a_{n}+b_{n}+3 c_{n} \\
c_{n+1} & =a_{n}+b_{n}+c_{n}
\end{aligned}
$$

for $n \geq 0$. Let A, B, C be the remainders when $a_{13^{4}}, b_{13^{4}}, c_{13^{4}}$ are divided by 13 . Find the ordered triple (A, B, C).

