Tiebreaker Round

CCA Math Bonanza

2 Feb 2019

- TB1) Compute $1^4 + 2^4 + 3^4 + 4^4 + 5^4 + 6^4$.
- TB2) Isosceles triangle $\triangle ABC$ has $\angle ABC = \angle ACB = 72^{\circ}$ and BC = 1. If the angle bisector of $\angle ABC$ meets AC at D, what is the positive difference between the perimeters of $\triangle ABD$ and $\triangle BCD$?
- TB3) For i = 1, 2, ..., 7, Zadam Heng chooses a positive integer m_i at random such that each positive integer k is chosen with probability $\frac{2^i - 1}{2^{ik}}$. If $m_1 + 2m_2 + ... + 7m_7 \neq 35$, Zadam keeps rechoosing the m_i until this equality holds. Given that he eventually stops, what is the probability that $m_4 = 1$ when Zadam stops?
- TB4) The number 28! (28 in decimal) has base 30 representation

$$28! = Q6T32S??OCLQJ600000_{30}$$

where the seventh and eighth digits are missing. What are the missing digits? In base 30, we have that the digits A = 10, B = 11, C = 12, D = 13, E = 14, F = 15, G = 16, H = 17, I = 18, J = 19, K = 20, L = 21, M = 22, N = 23, O = 24, P = 25, Q = 26, R = 27, S = 28, T = 29.