## Tiebreaker Round

## CCA Math Bonanza

2 Feb 2019

TB1) Compute $1^{4}+2^{4}+3^{4}+4^{4}+5^{4}+6^{4}$.
TB2) Isosceles triangle $\triangle A B C$ has $\angle A B C=\angle A C B=72^{\circ}$ and $B C=1$. If the angle bisector of $\angle A B C$ meets $A C$ at $D$, what is the positive difference between the perimeters of $\triangle A B D$ and $\triangle B C D$ ?

TB3) For $i=1,2, \ldots, 7$, Zadam Heng chooses a positive integer $m_{i}$ at random such that each positive integer $k$ is chosen with probability $\frac{2^{i}-1}{2^{i k}}$. If $m_{1}+2 m_{2}+\ldots+7 m_{7} \neq 35$, Zadam keeps rechoosing the $m_{i}$ until this equality holds. Given that he eventually stops, what is the probability that $m_{4}=1$ when Zadam stops?

TB4) The number 28! (28 in decimal) has base 30 representation

$$
28!=Q 6 T 32 S ? ? O C L Q J 6000000_{30}
$$

where the seventh and eighth digits are missing. What are the missing digits? In base 30, we have that the digits $A=10, B=11, C=12, D=13, E=14, F=15$, $G=16, H=17, I=18, J=19, K=20, L=21, M=22, N=23, O=24$, $P=25, Q=26, R=27, S=28, T=29$.

