CCA Math Bonanza

Tiebreaker Round

1. Compute the greatest 4-digit number $\underline{A B C D}$ such that $\left(A^{3}+B^{2}\right)\left(C^{3}+D^{2}\right)=2015$.
2. If a, b, c are the roots of $x^{3}+20 x^{2}+1 x+5$, compute $\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right)$.
3. Positive integers (not necessarily unique) are written, one on each face, on two cubes such that when the two cubes are rolled, each integer $2 \leq k \leq 12$ appears as the sum of the upper faces with probability $\frac{6-|7-k|}{36}$. Compute the greatest possible sum of all the faces on one cube.
