Team Round

CCA Math Bonanza

17 Apr 2021

T1) How many sequences of words (not necessarily grammatically correct) have the property that the first word has one letter, each word can be obtained by inserting a letter somewhere in the previous word, and the final word is CCAMT? Here are examples of possible sequences:

C,CA,CAM,CCAM,CCAMT.

A,AT,CAT,CAMT,CCAMT.

T2) Given that real numbers a, b, and c satisfy $a b=3, a c=4$, and $b+c=5$, the value of $b c$ can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m+n$.

T3) For any real number x, we let $\lfloor x\rfloor$ be the unique integer n such that $n \leq x<n+1$. For example. $\lfloor 31.415\rfloor=31$. Compute

$$
2020^{2021}-\left\lfloor\frac{2020^{2021}}{2021}\right\rfloor(2021) .
$$

T4) Let $A B C D$ be a unit square. Points M and N are the midpoints of sides $A B$ and $B C$ respectively. Let P and Q be the midpoints of line segments $A M$ and $B N$ respectively. Find the reciprocal of the area of the triangle enclosed by the three line segments $P Q$, $M N$, and $D B$.

T5) We say that a special word is any sequence of letters containing a vowel. How many ordered triples of special words $\left(W_{1}, W_{2}, W_{3}\right)$ have the property that if you concatenate the three words, you obtain a rearrangement of "aadvarks"?
For example, the number of triples of special words such that the concatenation is a rearrangement of "adaa" is 6 , and all of the possible triples are:

$$
(d a, a, a),(a d, a, a),(a, d a, a),(a, a d, a),(a, a, d a),(a, a, a d) .
$$

T6) Three spheres have radii 144,225 , and 400, are pairwise externally tangent to each other, and are all tangent to the same plane at A, B, and C. Compute the area of triangle $A B C$.

T7) Find the sum of all positive integers n with the following properties:

- n is not divisible by any primes larger than 10 .
- For some positive integer k, the positive divisors of n are

$$
1=d_{1}<d_{2}<d_{3} \cdots<d_{2 k}=n .
$$

- The divisors of n have the property that

$$
d_{1}+d_{2}+\cdots+d_{k}=3 k .
$$

T8) Let $A B C$ be a triangle with $A B=9$ and $A C=12$. Point B^{\prime} is chosen on line $A C$ such that the midpoint of B and B^{\prime} is equidistant from A and C. Point C^{\prime} is chosen similarly. Given that the circumcircle of $A B^{\prime} C^{\prime}$ is tangent to $B C$, compute $B C^{2}$.

T9) Each number in the list $1,2,3, \ldots, 10$ is either colored red or blue. Numbers are colored independently, and both colors are equally probable. The expected value of the number of positive integers expressible as a sum of a red integer and a blue integer can be written as $\frac{m}{n}$ for relatively prime positive integers m and n. What is $m+n$?

T10) Given that positive integers a, b satisfy

$$
\frac{1}{a+\sqrt{b}}=\sum_{i=0}^{\infty} \frac{\sin ^{2}\left(\frac{10^{\circ}}{3^{i}}\right)}{\cos \left(\frac{30^{\circ}}{3^{i}}\right)},
$$

where all angles are in degrees, compute $a+b$.

