Individual Round
 CCA Math Bonanza

23 Apr 2022

I1) Asteroids A and B have circular orbits around the same star. Asteroid A is located 400 km away from the star and takes 8000 hours to complete one full revolution. Asteroid B is located 100 km away and the speed of Asteroid B is twice the speed of Asteroid A. Find how long it takes for Asteroid B to complete one full revolution in hours.

I2) Alice, Bob, Cassie, Dave, and Ethan are going on a road trip and need to arrange themselves among a drivers seat, a passenger seat, and three distinguishable back row seats. Alice, Bob, and Cassie are not allowed to drive. Alice and Bob are also not allowed to sit in the front passenger seat. Find the number of possible seating arrangements.

I3) Let $S=1,2, \cdots, 100 . X$ is a subset of S such that no two distinct elements in X multiply to an element in X. Find the maximum number of elements of X.

I4) Burrito Bear has a white unit square. She inscribes a circle inside of the square and paints it black. She then inscribes a square inside the black circle and paints it white. Burrito repeats this process indefinitely. The total black area can be expressed as $\frac{a \pi+b}{c}$. Find $a+b+c$.

I5) Let Γ_{1} be a circle with radius $\frac{5}{2}$. A, B, and C are points on Γ_{1} such that $\overline{A B}=3$ and $\overline{A C}=5$. Let Γ_{2} be a circle such that Γ_{2} is tangent to $A B$ and $B C$ at Q and R, and Γ_{2} is also internally tangent to Γ_{1} at $P . \Gamma_{2}$ intersects $A C$ at X and Y. [PXY] can be expressed as $\frac{a \sqrt{b}}{c}$. Find $a+b+c$.

I6) Let regular tetrahedron $A B C D$ have center O. Find $\tan ^{2}(\angle A O B)$.
I7) Let

$$
\begin{gathered}
A=\{2,4, \ldots, 1000\}, \\
B=\{3,6, \ldots, 999\}, \\
C=\{5,10, \ldots, 1000\}, \\
D=\{7,14, \ldots, 994\}, \\
E=\{11,22, \ldots, 990\}, \\
\text { and } F=\{13,26, \ldots, 988\} .
\end{gathered}
$$

Find the number of elements in the set $(((((A \cup B) \cap C) \cup D) \cap E) \cup F)$.

I8) Lason Jiu gives a problem to Sick Nong and Ayush Agrawal. Sick takes 6 minutes to solve the problem, while Ayush takes 9 minutes. Sick has a $1 / 3$ chance of solving correctly and Ayush has a $2 / 3$ chance of solving correctly. If they solved it incorrectly, they resume solving with the same time and accuracy. Lason gives a rubber chicken to the first person who solves it correctly. If Sick and Ayush solve the question at the same time, Lason checks Sick's work first. The probability that Ayush wins the rubber chicken can be expressed as $\frac{p}{q}$. Find $p+q$.

I9) Find the maximum value of x such that x divides all $p^{32}-1$ for all primes $p>20$.
I10) Let $\overline{A B}$ be a line segment of length $2, C_{1}$ be the circle with diameter $\overline{A B}, C_{0}$ be the circle with radius 2 externally tangent to C_{1} at A, and C_{2} be the circle with radius 3 externally tangent to C_{1} at B. Duck D_{1} is located at point B, Duck D_{2} is located on $C_{2}, 270$ degrees counterclockwise from B, and Duck D_{0} is located on $C_{0}, 270$ degrees counterclockwise from A. At the same time, the ducks all start running counterclockwise around their corresponding circles, with each duck taking the same amount of time to complete a full lap around its circle. When the 3 ducks are first collinear, the distance between D_{0} and D_{2} can be expressed as $p \sqrt{q}$. Find $p+q$.

I11) A river is bounded by the lines $x=0$ and $x=25$, with a current of 2 units $/ \mathrm{s}$ in the positive y-direction. At $t=0$, a mallard is at $(0,0)$, and a wigeon is at $(25,0)$. They start swimming with a constant speed such that they meet at $(x, 22)$. The mallard has a speed of 4 units/s relative to the water, and the wigeon has a speed of 3 units/s relative to the water. Find the value of x.

I12) Find the number of 8-tuples of binary inputs $\{A, B, C, D, E, F, G, H\}$ such that

$$
\begin{aligned}
& \{(A \text { AND } B) \text { OR }(C \text { AND } D)\} \text { AND }\{(E \text { AND } F) \text { OR }(G \text { AND } H)\} \\
& =\{(A \text { OR } B) \text { AND }(C \text { OR } D)\} \text { OR }\{(E \text { OR } F) \text { AND }(G \text { OR } H)\}
\end{aligned}
$$

The AND gates produce an output that is ON only if both the inputs are ON, and the OR gates produce an output that is OFF only if both inputs are OFF.

I13) Let triangle $A_{1} B C$ have sides $A_{1} B=5, A_{1} C=12$, and $B C=13$. For all natural numbers i, let B_{i} be the foot of the altitude from A_{i} to $B C$, let $A_{2 i}$ be the foot of the altitude from B_{i} to $A_{1} B$, and let $A_{2 i+1}$ be the foot of the altitude from B_{i} to $A_{1} C$.

$$
\sum_{i=1}^{7} A_{i} B_{i}=\frac{p}{q}
$$

Find $p+q$.
I14) Let $A B C$ be a triangle with side lengths $A B=6, A C=7$, and $B C=8$. Let H be the orthocenter of $\triangle A B C$ and H^{\prime} be the reflection of H across the midpoint M of $B C$. $\frac{\left[A B H^{\prime}\right]}{\left[A C H^{\prime}\right]}$ can be expressed as $\frac{p}{q}$. Find $p+q$.

I15) Let P, A, B, C, D be points on a plane such that $P A=9, P B=19, P C=9$, $P D=5, \angle A P B=120^{\circ}, \angle B P C=45^{\circ}, \angle C P D=60^{\circ}$, and $\angle D P A=135^{\circ}$. Let G_{1}, G_{2}, G_{3}, and G_{4} be the centroids of triangles $P A B, P B C, P C D, P D A .\left[G_{1} G_{2} G_{3} G_{4}\right]$ can be expressed as $a \sqrt{b}+c \sqrt{d}$. Find $a+b+c+d$.

